Elliptic triangulation of spheres

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Faculty of Applied Science, South Eastern University of Sri Lanka

Abstract

The degree of a vertex x in a triangulation T of a sphere is the number of triangles 01, (52, ..., which contain x and is denoted by d = d(x). A triangulation T is said to be elliptic if it does not contain any point with degree greater than 6, that is, d(x) < 6 for every x e T. We used Euler's equation to get 3a3 + 2Œ4 + — — 2Œ8 — (m — 6)am = 12, which reduces to = 12 in the elliptic case. There are 19 nonnegative solutions ((13 [14, as) for this equation. We call ct4, as) is the type of the triangulation T. It has been shown that for each of the solution ((13 114, as) there exist a triangulation T and a non negative integer N = (.16 0 with the property (Œ3(T), a4(T), Œ6(T) = (a3, a4, 115, (16). Our main aim was to find, for each of the 19 types of triangulation, all possible values of N = a6 . We describe various methods to construct elliptic spherical triangulation such as the mutant, productive and self-reproductive configurations, the fulling constructions and the gluing of patches method. We remark here that some non-existence results on triangulation have been obtained by Grunbaum, Eberhard, and Bruckner have determined the minimum values of N such that the triangulations of type (a4,a4,a5,N) exist for each of the 19 nonnegative solutions (a3,a4,a5).

Description

Citation

Faculty of Applied Science, South Eastern University of Sri Lanka. First Annual Science Research Session 2012

Collections

Endorsement

Review

Supplemented By

Referenced By